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Since the discovery of HIV as the causative agent of 
AIDS in 1983/1984, remarkable progress has been made 
in finding antiretroviral drugs (ARVs) that are effective 
against it. A major breakthrough occurred in 1996 when 
it was found that triple drug therapy (HAART) could 
durably suppress viral replication to minimal levels. It was 
then widely felt, however, that HAART was too expen-
sive and complex for low- and middle-income countries, 
and so, with the exception of a few of these countries, 
such as Brazil, a massive scale-up did not begin until the 
WHO launched its ‘3 by 5’ initiative and sizeable fund-
ing mechanisms, such as the Global Fund to Fight AIDS, 

TB and Malaria and the US President’s Emergency Plan 
for AIDS Relief (PEPFAR), came into existence. A pivotal 
enabler of the scale-up was a steady lowering of drug 
prices through entry of generic antiretrovirals, competi-
tion between generic manufacturers and the making of 
volume commitments. The WHO Prequalification of Medi-
cines Programme and the Expedited Review Provision of 
the US Food and Drug Administration have been impor-
tant for the assurance of quality standards. Antiretroviral 
drug development by research-based pharmaceutical 
companies continues, with several important innovative 
products, such as long-acting agents, in the pipeline.

In 1981, the first reports appeared about a new deadly 
syndrome in men who had sex with men (MSM) and 
injection drug users (IDUs) in cities on the East and West 
Coasts of the United States. Major clinical manifestations 
were Pneumocystis carinii pneumonia (PCP; now Pneu-
mocystis jirovecii) and Kaposi’s sarcoma [1–4]. The under-
lying pathology was a severe immunodeficiency [3,4].

Even though one of these reports included IDUs [4], 
the first name given to this new syndrome was gay-related 
immunodeficiency syndrome (GRID) because the major-
ity of ‘cases’ were MSM [5]. The fact that the syndrome 
was subsequently found to also develop in people who 
had haemophilia, in recipients of blood transfusions and 
in Haitians, made it likely that it had an infectious origin.

In 1983, researchers at the Institut Pasteur isolated 
a retrovirus from a lymph node from a man with 
signs including swollen lymph nodes and symptoms 
that often preceded what was by now called acquired 
immune deficiency syndrome (AIDS), and called it 

lymphadenopathy-associated virus (LAV) [6]. In 1984, a 
group at the US National Institutes of Health (NIH) iso-
lated a similar virus from patients with AIDS, ‘pre-AIDS’ 
and ‘at risk for AIDS’, and called it human T-lympho-
tropic virus type III (HTLV-III) [7,8]; in that same year 
a group from the University of California San Francisco 
isolated a similar virus from AIDS patients in San Fran-
cisco and called it AIDS-associated retrovirus [9]. To 
eliminate the multiplicity of names, in 1986 a subcom-
mittee of the International Committee on Taxonomy of 
Viruses recommended that the retrovirus isolates identi-
fied as causative agent for AIDS be renamed with a virus 
group name: human immunodeficiency virus (HIV) 
[10]. This name has been adopted universally.

In 1986, a virus related to HIV, which was subse-
quently renamed HIV-1, but more similar to simian 
T-lymphotropic virus type III of African green monkeys 
(STLV-IIIAGM), was isolated from individuals in West 
Africa [11]. This virus was subsequently called HIV-2. 
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In this article we will only discuss HIV-2 in the context 
of susceptibility to antiretroviral (ARV) agents and lack 
of market incentives to develop HIV-2-specific drugs.

The isolation and propagation of the virus enabled 
the development of antibody and antigen tests, which 
made it possible to perform epidemiological studies. 
These made it clear that AIDS was the tip of the ice-
berg and that there were many asymptomatic carriers 
of HIV-1 [12]. Unfortunately over time it became evi-
dent that almost all of those progressed to symptomatic 
infection and death [13].

It also became apparent that AIDS and HIV-1 were 
not restricted to high-income countries, but were also 
highly prevalent in resource-poor settings, in particular 
in sub-Saharan Africa [14], the cradle of human immu-
nodeficiency viruses [15].

In the initial years of the AIDS epidemic, except for 
symptomatic treatment and treatment of a few oppor-
tunistic infections, such as PCP [16], cryptococcal men-
ingitis [17], toxoplasmosis [18], and oropharyngeal and 
oesophageal Candida albicans infections [3,4,19], little 
could be done for the patients. If they recovered from a 
treatable affliction, another opportunistic disease mani-
festation would follow, often an untreatable one, and 
death would follow.

The rush to develop antiretroviral agents

When AIDS first appeared, there were hardly any 
effective antiviral agents on the market, the most 
prominent being acyclovir, an acyclic nucleoside 
analogue active against herpes simplex virus infec-
tions  [20,21]. Nucleoside and nucleotide analogues 
are chain terminators of DNA synthesis, and some of 
these compounds were found to be potent inhibitors 
of HIV-1 replication; 3′-azido-3′-deoxythymidine 
(AZT), later called zidovudine (ZDV) appeared to 
be the most promising of these nucleoside analogue 
reverse transcriptase inhibitors (NRTIs) [22,23]. The 
drug was first synthesized in 1964 in an academic 
institution as a potential anti-cancer agent under 
a grant from the US National Institutes of Health 
(NIH), but development was shelved after it proved 
biologically inert in mice  [24,25]. It then rapidly 
went into clinical development for HIV‑1. After 
just one small exploratory study [26] and a double-
blind placebo-controlled trial in 282 patients with 
AIDS and ‘AIDS-related complex’, ZDV was rapidly 
approved by the regulatory authorities and came on 
the market in early 1987. The latter study had been 
terminated prematurely because of an impressive sur-
vival benefit in those receiving active drug [27,28].

The short time between discovery of a disease agent 
and the approval of a drug active against it was unprec-
edented. This rapid pace of development, to a significant 

extent, resulted from extremely strong patient activism, 
which was also extraordinary. AIDS appeared in the 
MSM community in the US when it was already relatively 
well-organized because of the struggle for gay emancipa-
tion. When this terrible scourge appeared on stage, kill-
ing scores of MSM, the movement effectively changed 
course and put enormous pressure on pharmaceutical 
companies, research agencies, such as the NIH, the US 
regulatory authority and the Food and Drug Administra-
tion (FDA), to develop and make available drugs expedi-
tiously to prevent more deaths. Of course there was also 
a market incentive for pharmaceutical companies, since 
this appeared to be a disease that was prevalent in high-
income countries.

Hopes were high for ZDV, but unfortunately, despite 
impressive initial results, beneficial effects were of lim-
ited duration. It soon became evident that with con-
tinued treatment, viral resistance developed  [29]. In 
the following years, additional NRTIs, such as didano-
sine (2′,3′-dideoxyinosine [ddI]) [30] and zalcitabine 
(2′,3′-dideoxycytidine [ddC]) [31], appeared on the 
market; however, the lessons of tuberculosis (TB) drug 
development were ignored and the drugs were not used 
in combination, but as sequential monotherapy.

Despite early negative results in one dual NRTI 
combination study (ACTG152) evaluating ZDV–ddC 
[32], further studies comparing dual nucleoside com-
bination therapy to monotherapy showed better out-
comes for combination therapy used in ARV-naive 
patients [33–37]. The ACTG152 study compared con-
tinuation of ZDV monotherapy with the addition of 
ddC to ZDV in patients who no longer appeared to 
benefit from ZDV alone, while latter studies compared 
monotherapy versus dual therapy by starting two 
ARVs at the same time in ARV-naive patients.

Although the effects of dual-NRTI combination 
therapy were much better than those of monotherapy, 
they were still of limited duration. Only in 1996, when 
triple ARV drug therapy, highly active antiretroviral 
therapy (HAART), was introduced did the effects of 
treatment become durable. With HAART, viral replica-
tion could be suppressed to minimal levels and a high 
genetic barrier against development of drug resistance 
was created [38,39].

The possibility and success of triple drug therapy 
was partially due to the appearance of new drug 
classes, such as protease inhibitors (PIs) [38] and non-
nucleoside reverse transcriptase inhibitors (NNRTIs) 
[39], but even more so to the emergence of molecular 
amplification techniques, such as PCR, which enabled 
researchers to quantify the virus and to gain insight 
in viral dynamics [40]. Because of the extremely rapid 
emergence of viral resistance against NNRTIs in mon-
otherapy studies  [41], several companies discarded 
development of drugs belonging to this class in the 
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early 1990s. If we had been able to measure viral load 
in those early days and gain insight in viral replication 
dynamics, we could have had triple combination ther-
apy, consisting of 2 NRTIs + 1 NNRTI around 1992, 
which would have saved many lives.

The development of NNRTIs has not only been 
important in allowing for an alternative to PI-based 
HAART, but also for making it possible to scale-up 
ARV therapy in resource-poor settings. This is because 
NNRTIs are considerably cheaper to produce than PIs, 
allow for single-tablet regimens and, unlike ritonavir-
boosted PIs in those days, were heat-stable.

By now, more than 25 ARV drugs, excluding fixed-dose 
combinations (FDCs), belonging to 6 different classes, 
have been approved by the FDA; some of those, like dela-
virdine and ddC were later withdrawn by the companies 
involved because they became obsolete (Table 1).

Bringing antiretrovirals to resource-poor 
settings

HAART was introduced to high-income countries 
and some middle-income countries, such as Bra-
zil  [42–44], in 1996; however, this did not lead to 
an immediate concrete initiative to broaden access 
to these life-saving drugs in low-income countries, 
particularly sub-Saharan Africa, despite the fact that 
the disease burden was greatest here.

Indeed, very little happened in sub-Saharan Africa 
for years to come until May 2000 and, on the eve of 
the XIIIth International AIDS Conference in Durban, 
South Africa, an announcement was made about an 
agreement between UNAIDS and five large pharma-
ceutical companies to start providing ARVs at greatly 
reduced prices to poor countries through the Acceler-
ating Access Initiative (AAI) [45]. The timing of this 
agreement had at least something to do with the fact 
that this was the first time that the International AIDS 
Conference was held in sub-Saharan Africa: how could 
the pharmaceutical companies and the UN agencies go 
there without having something concrete to offer?

The AAI was a start that allowed for demonstration 
projects [46,47]; however, because very little external 
funding for treatment was available at the time, it did 
not result in significant national scale-up programmes. 
Botswana was the exception, but even in this middle-
income country most of the funding was provided by 
external donors: the Merck Foundation and the Bill & 
Melinda Gates Foundation [48]. However, the world 
rapidly moved beyond the AAI. In 2001, the Report 
of the Commission on Macroeconomics and Health 
appeared, which stressed the importance of health for 
economic development and made a special plea to tackle 
the ‘big three’ infectious diseases, and can be considered 
to be a prelude to the creation of the Global Fund to 

Fight AIDS, TB and Malaria (GFATM) [49]. In the same 
year the UN General Assembly Session on HIV/AIDS 
(UNGASS) was held – the first time a General Assem-
bly session was devoted to a single disease. The Declara-
tion of Commitment coming out of UNGASS firmly put 
HIV treatment on the agenda [50]. In 2003, the WHO 
launched the ‘3 by 5’ initiative, which set a target of 
3 million people on ARV treatment by 2005 [51]. The 
launch of ‘3 by 5’ more or less coincided with or was 
followed shortly thereafter by the launch of sizable fund-
ing mechanisms: the World Bank’s Multicountry AIDS 
Program (MAP) [52], the GFATM [53] and the US Presi-
dent’s Emergency Plan for AIDS Relief (PEPFAR) [54]. 
At the end of 2002, approximately 300,000 people in 
low- and middle-income countries were receiving ARV 
treatment, whereas at the end of 2012 this number was 
9.7 million. The rise in sub-Saharan Africa has been spec-
tacular: from 50,000 people living with HIV (PLHIV) on 
ARVs in 2002 to 7.5 million a decade later [55].

Antiretroviral		  Year of US FDA  
(abbreviation)	 Drug class	 approval

Zidovudine (ZDV)	 NRTI, nucleoside	 1987
Didanosine (ddI)	 NRTI, nucleoside	 1991
Zalcitabine (ddC)	 NRTI, nucleoside	 1992
Stavudine (d4T)	 NRTI, nucleoside	 1994
Lamivudine (3TC)	 NRTI, nucleoside	 1995
Abacavir (ABC)	 NRTI, nucleoside	 1998
Tenofovir disoproxil	 NRTI, nucleotide	 2001
fumarate (TDF)
Emtricitabine (FTC)	 NRTI, nucleoside	 2003
Saquinavir (SQV)	 PI	 1995
Ritonavir (RTV or r)	 PI	 1996
Indinavir (IDV)	 PI	 1996
Nelfinavir (NFV)	 PI	 1997
Amprenavir (APV)	 PI	 1999
Fosamprenavir	 PI	 2003
(fos-APV)		
Lopinavir (LVP)	 PI	 2000
Tipranavir (TPV)	 PI	 2005
Darunavir (DRV)	 PI	 2006
Nevirapine (NVP)	 NNRTI	 1996
Delavirdine (DLV)	 NNRTI	 1997
Efavirenz (EFV)	 NNRTI	 1998
Etravirine (ETV)	 NNRTI	 2008
Rilpivirine (RPV)	 NNRTI	 2011
Enfuvirtide (T20)	 Fusion inhibitor	 2003
Maraviroc (MVC)	 CCR5-blocker	 2007
Raltegravir (RAL)	 Integrase inhibitor	 2007
Elvitegravir (EVT)	 Integrase inhibitor	 2012
Dolutegravir (DTG)	 Integrase inhibitor	 2013

Table 1. Antiretrovirals approved by the US FDA 1987–2014

NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse 
transcriptase inhibitor; PI, protease inhibitor; US FDA, United States Food and 
Drug Administration. 
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The place of generic drugs

This dramatic scale-up of ARV treatment would 
not have been possible without the entry of generic 
ARVs and competition among generic manufacturers. 
Countries like Brazil, which was already producing 
generic ARVs, also used the threat of domestic generic 
production of new drugs if the price of originator 
company products would not be reduced to accepta-
ble levels [42,43]. Both Thailand and Brazil have used 
compulsory licenses to the same end [56]. Negotiated 
drug prices in Brazil were lowest for patented ARVs 
for which there was generic competition [44].

After initial resistance by originator companies to 
generic competition, more and more of them, but not 
all, decided not to uphold patents in the poorest and 
hardest hit countries in sub-Saharan Africa. Companies 
may give licenses to generic manufacturers to produce 
‘their’ ARVs for these countries, for which the origi-
nators will receive royalties. Some of them even have 
joined the Medicines Patent Pool (MPP), which was 
created in 2010, through the WHO-based financing 
mechanism UNITAID, in order to cause further reduc-
tions in the price of key HIV medicines for those living 
in low- and middle-income countries and to encourage 
the development of ‘better adapted’ HIV medicines, 
including paediatric treatment. It does this through vol-
untary licenses from patent holders and sublicenses to 
generic manufacturers [57].

The Clinton Health Access Initiative (CHAI), which 
began in 2002 as the Clinton HIV/AIDS Initiative, 
has played a crucial role in further price reductions of 
generic ARVs, in which the making of volume com-
mitments has been important [58]. Figure 1 shows 
how median prices of WHO-recommended first-line 
regimens in low- and middle-income countries have 
decreased over time [59].

A critical component of the ARV scale-up has been 
the assurance of quality standards, through the WHO 
Prequalification of Medicines Programme [60] and 
the Expedited Review Provision of the FDA [61], for 
the generic drugs being used in GFATM and PEPFAR-
funded programmes, respectively.

Prices have now gone down so much that concern 
has been voiced that generic drug manufacturers con-
sider current prices unsustainable, unless tender proce-
dures are amended, regulatory procedures simplified, 
forecasting of need is improved and ARV treatment 
guidelines simplified [62]. For paediatric formulations 
specifically, which are much needed by some, the over-
all demand is relatively low and the opportunity costs 
of having to manufacture different dosages may be too 
high, if one realizes that the same production facilities 
may be used for more profitable products. The relative 
lack of paediatric ARV formulations is a clear exam-
ple of market failure, which can only be addressed by 
providing sufficient incentives and pooled procurement, 
such as UNITAID tries to do [63].
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Figure 1. Median prices of WHO-recommended first-line regimens in low- and middle-income countries 2004–2012a

aUSD per patient-year. The strategic use of antiretrovirals to help end the HIV epidemic (reproduced with permission from the WHO [134]). EFV, efavirenz; FTC, 
emtricitabine; NPV, nevirapine; TDF, tenofovir disoproxil fumarate; ZDV, zidovudine; 3TC, lamivudine. 
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Ongoing antiretroviral drug development

There is still considerable investment in the discovery 
and development of new ARV products, although the 
pace of development appears to have slowed down 
somewhat. Efficacy and safety profiles of ARVs have 
become better over time and FDCs, including single-
tablet daily regimens, have taken the lead – it has 
thus become more difficult to improve upon existing 
products.

When HAART became available in 1996 there were 
three ARV drug classes: NRTIs, NNRTIs and PIs. This 
meant that the chance to achieve durable complete viral 
suppression for those with extensive NRTI drug resist-
ance, stemming from the NRTI mono- and dual therapy 
days, was limited. This changed between 2003 and 2007 
when we saw the appearance of drugs belonging to 
three new drug classes: the fusion inhibitor enfuvirtide 
(T20) [64,65], the CCR5 inhibitor maraviroc  [66,67] 
and the integrase inhibitor raltegravir [68,69]. Now 
achieving an undetectable plasma virus load in patients 
with extensive prior drug resistance was no longer the 
exception [64–69].

Following that ‘second revolution’ in ARV therapy, 
development of ARVs aimed at new targets has not 
been very successful. Both inhibitors of viral matura-
tion and viral attachment to the CD4-receptor thus far 
suffer from the fact that a significant proportion of viral 
isolates are less susceptible to these agents [70,71]. The 
attachment inhibitor prodrug BMS-663068, however, 
was recently found to show similar efficacy as ataza-
navir/ritonavir in ARV-experienced patients with virus 
that was sensitive to it [71].

That does not mean that no new ARVs have made it 
to the market, but they belong exclusively to existing 
drug classes: the NNRTIs etravirine [72,73] and rilpiv-
irine (RPV) [74,75] and the integrase inhibitors elvite-
gravir (EVG) [76,77] and dolutegravir [78,79].

In addition, cobicistat, a drug that is not an ARV, but 
a new pharmacological booster that may be used as an 
alternative to ritonavir [80], has made it to the market. 
The single-tablet regimen QUAD contains tenofovir 
disoproxil fumarate (TDF) + emtricitabine + elvitegra-
vir + cobicistat [77,80,81].

Tenofovir alafenamide fumarate is a TDF prodrug in 
clinical development, which appears to have less renal- 
and bone toxicity than TDF [82]. Other drugs in clini-
cal development are the NNRTI MK-1439 [83] and the 
aforementioned BMS-663068 [72].

Quite a few of the initial wave of ARVs have gone or 
are going off patent soon [84], which opens the door 
for generic versions. Paradoxically this may stimulate 
new drug development or at least ‘better’ versions 
of existing agents, including new FDCs, in order to 
substitute or prolong patents (‘evergreening’). In a 

worst-case scenario these new drugs have a negligible 
improvement when compared with the old ones.

Some ARVs in development, such as the NNRTI ‘RPV 
long-acting’ and the integrase inhibitor GSK1265744 
(GSK744), may be given as long-acting injectable 
nanoformulations [85,86]. This may revolutionize 
both prevention and treatment of HIV infection. A 
recent study showed that an oral combination of RPV 
+ GSK744 as maintenance therapy after 24 weeks of 
triple-drug lead-in therapy was well-tolerated and 
showed good antiviral activity through 24 weeks [87]. 
A study in macaques showed that monthly injections 
of ‘GSK744 long-acting’, that reproduced the human 
dose, gave full protection against repeated vaginal 
SHIV exposures [88]. Likewise, long-acting formula-
tions for local vaginal delivery of ARVs are also in 
development [89]. Thus, before too long, women may 
have a choice between oral, subcutaneous and local 
ARV-based prevention methods.

It is always risky to predict the future, but as long 
as there is a sizable market for ARVs in high-income 
countries, pharmaceutical companies will remain 
interested in developing innovative products, such as 
the long-acting agents, for HIV-1 infection. With life 
expectancy of HIV-1-infected individuals who start 
ARV therapy in a timely manner approaching that of 
non-HIV infected individuals [90–93], the market will 
be there for a long time.

Similar to paediatric HIV-1 infection, HIV-2 has been 
a stepchild of ARV drug development. This virus is not 
susceptible to NNRTIs [94] and the activity of some PIs 
against it is also far from optimal [95]. Although most 
in vitro studies have shown that similar concentrations 
of NRTIs are needed to block both HIV-1 and HIV-2 
replication, data suggest that some NRTIs may not be 
as effective against HIV-2 [96–98]. Given the limited 
size of the HIV-2 epidemic, there has been no market 
incentive to develop HIV-2-specific ARVs. Fortunately, 
integrase inhibitors appear to have activity against 
HIV-2 [99–101]. Given that HIV-2 uses a broad range 
of co-receptors, this is unlikely for maraviroc [102]. 
HIV-2 is intrinsically resistant to T20 [103,104].

In many resource-poor settings second-line options 
are limited and have a price that is considerably higher 
than first-line regimens. Dose optimization studies may 
point the way to combinations that remain effective 
even if they contain lower than standard doses of par-
ticular drugs, thus allowing for cost savings [105].

Conclusions

The ARV scale-up represents an unprecedented success 
story in global health. When the WHO’s ‘3 by 5’ was 
launched, it was difficult to believe that 10 years later 
almost 10 million people in low- and middle-income 

AVT-14-RV-3256_Lange.indd   9 13/10/2014   14:49:22



JMA Lange & J Ananworanich

©2014 International Medical Press10

countries, of whom 7.5 million live in sub-Saharan 
Africa, would have initiated treatment with these life-
saving drugs [55].

Yet, challenges remain. There are great disparities 
in access to treatment across countries, regions and 
populations [55,106]. Even in high-income coun-
tries, a significant proportion of patients present late 
for care and treatment [107–110] and many people 
in low-income countries present extremely late [55]. 
Weak health-care systems lead to frequent stock-outs 
of ARVs [111,112], thus exposing patients to the dan-
ger of development of ARV drug resistance, especially 
if the drugs used in the combination do not have simi-
lar half-lives. From this perspective it is questionable 
to recommend replacing emtricitabine by lamivudine 
in an FDC with TDF and efavirenz, which is being 
promoted for cost considerations  [113]. The expo-
nential growth of funding for global health, including 
HIV, appears to be over [114], which implicates that 
more has to be done for less money. By contrast, the 
finding that ARV treatment is a highly effective means 
to prevent onward transmission of HIV-1 (Treatment 
as Prevention [TASP]) [115–117] has proven to be a 
major stimulus to broaden the WHO treatment guide-
lines to include people with higher CD4+ lymphocyte 
counts [118]. However, the primary objective of treat-
ing people with HIV infection is keeping them healthy 
and alive, and the prevention effect is a secondary 
benefit. Benefits for individual health and prevention 
of onward transmission are greatest if treatment is 
started early [90–93,117,119]. Early treatment has the 
additional benefit of making it much easier to task-
shift, which is essential in environments with critical 
health-care worker shortages [120].

Treatment and prevention benefits of ARVs are 
contingent on good adherence and everything possi-
ble should be done to promote adherence and also to 
minimize the still significant treatment discontinua-
tion and loss to follow-up [121,122].

Further expansion of ARV therapy will lead to 
an initial increase in costs, but in the end it will be 
cost-saving [123,124]. It is unlikely that donors are 
willing to take such a long-term view and make the 
upfront extra money available. Countries themselves 
are now bearing more than half of the treatment costs, 
but quite a few are still highly or almost exclusively 
dependent on donor money [125]. It is clear that fur-
ther efficiency gains, innovation and dose optimiza-
tion [105] are essential. We should also think about 
creating more innovative financing mechanisms [126], 
including the use of funnelling HIV money through 
health insurance [127].

We should not ignore the fact that non-communicable 
diseases are of increasing importance in resource-poor 
settings [128,129], and that we need to move from ‘AIDS 

exceptionalism’ to ‘health exceptionalism’ and use HIV 
programmes to increase access to care and treatment of 
other diseases as well [130].

Lastly, now that we are about to have highly effective 
oral therapy for HCV infections [131], the cause of an 
enormous disease burden in some developing countries 
such as Egypt [132], it is clear that tiered pricing will 
be necessary to increase access to these drugs. How-
ever, although HIV infection is a chronic affliction that 
requires lifelong treatment, HCV is curable with short-
term treatment [133]. In this case, tiered pricing may 
lead to massive ‘medical tourism’ from high- to middle-
income countries, stimulated by health insurance com-
panies. HIV changed the world by mobilizing massive 
streams of donor money. HCV may change the world by 
forging convergence of drug prices in high- and middle-
income countries or the outsourcing of medical care 
from high- to middle-income countries.
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