Review

Drug-resistant and immune-escape HBV mutants in HIV-infected hosts

Karine Lacombe1,2,3*, Anders Boyd4, Joel Gozlan4, Fabien Lavocat5, Pierre-Marie Girard1,2,3, Fabien Zoulim5,6

1INSERM, UMR-S707, Paris, France
2Pierre and Marie Curie Faculty of Medicine, Université Pierre et Marie Curie, Paris, France
3Infectious and Tropical Diseases Department, Saint-Antoine Hospital, AP-HP, Paris, France
4Virology Department, Saint-Antoine Hospital, AP-HP, Paris, France
5INSERM, U871, Lyon, France
6Hepatology Department, Hospices Civils de Lyon, Hôpital de l’Hôtel-Dieu, Lyon, France

*Corresponding author e-mail: karine.lacombe@sat.aphp.fr

HIV–HBV-coinfected patients require optimal control of viral replication in order to prevent the development of severe comorbidities, such as liver cirrhosis and hepatocellular carcinoma. The genetic diversity of HBV is a poorly investigated factor of such viral replication in HIV-infected hosts. HBV genome diversity can be differentiated into two major aspects: genotypic and phenotypic. Genotypic diversity is more related to the natural history of HBV infection and genotypes are mostly determined by geographical origin of the hosts. Phenotypic diversity arises from attempts to escape from host immune surveillance (that is, precore, core and basal core promoter mutants), selection resulting from the use of treatments with weak genetic barrier (that is, pol mutants), exposure to hepatitis B immunoglobulin (that is, ‘immune-escape’ S gene mutants) or treatment-induced mutations from overlapping genes (that is, pol mutants inducing ‘vaccine-escape’ S gene mutants). pol mutations typically lead to uncontrolled viral replication, whereas S gene mutations can significantly alter hepatitis B surface antigen synthesis and reduce binding to antibodies, which renders individuals who are vaccinated or cured of HBV infection susceptible to infection. For patients coinfected with HIV, hepatitis B treatment options that aim to reduce the risk of HBV mutations from emerging must be seriously considered, not only from clinical but also public health perspectives.

Introduction

The decrease in AIDS-related mortality and morbidity attributable to effective combined antiretroviral therapy post-1996 has ushered a new era of liver-related diseases associated with chronic hepatitis, which is now the second leading cause of death in HIV-infected patients [1]. Approximately 7–10% of all HIV-infected patients are chronically coinfected with HBV and there is now strong evidence of higher AIDS-related events and death rates in this population [2,3]. In HIV–HBV-coinfected hosts, the occurrence of hepatocellular carcinoma as a consequence of long-lasting chronic HBV replication is already a reality, with chronic HBV infection being associated with of death among 11% of hepatocellular carcinoma cases, as reported in France in 2008 [4]. Evidence from the REVEAL study (conducted in a cohort of HBV-monoinfected patients) [5] suggests that one of the best ways to prevent liver fibrosis progression, and ultimately the emergence of liver cancer in chronic HBV carriers, is to optimally control viral replication with efficient antiviral therapy alongside careful clinical follow-up. However, all the determinants of HBV pathogenicity in HIV coinfection have not yet been fully elucidated – one of them being the genetic diversity of HBV itself. The role of HBV genetic diversity, regardless of its influence from long-term exposure to drugs with dual anti-HIV and anti-HBV activity, has been proposed as a possible cofactor in hepatitis B evolution as well as in HBV transmission.

Origins of HBV genetic diversity

HBV is the only human virus belonging to the Hepadnaviridae family whose genome is composed of four open reading frames (ORFs) [6]. The preS/S region encodes three proteins, one of which is hepatitis B surface antigen (HBsAg). The preC/C region encodes the hepatitis
B e antigen (HBeAg) and hepatitis B core antigen. The P ORF (pol) specifically encodes viral polymerase, the main target of all oral anti-HBV agents currently used to treat chronic hepatitis B. Lastly, the X ORF encodes a protein involved in host and viral gene expression [7]. The replication of the DNA genome occurs via reverse transcription mediated by the pregenomic RNA, for which polymerase plays an essential role. A major characteristic of the HBV genome is its extensive overlapping of genes. A mutation on one nucleotide might have little effect on the expression of one protein, but can severely affect the expression of an overlapping gene. This effect explains why mutations on the pol gene, mainly selected by drug exposure, might induce mutations on the S gene that results in an altered expression of HBsAg.

The diversity of the HBV genome can be viewed from two perspectives [8]: genotypic diversity, which results from the gradual evolution of the HBV genome in the absence of selective pressure, and phenotypic diversity, which is a consequence of exerted selective pressures (for example, antiviral drugs). Such genomic variability has been poorly addressed in the context of HIV coinfection, although the prevalence of chronic HBsAg carriers ranges between 7% and 15% among HIV–HBV-coinfected patients who have been extensively treated with dual anti-HIV and anti-HBV drugs since the late 1980s.

Genotypic diversity

Serotypes and genotypes are the two principal outcomes of HBV genotypic variability. Serotypes are derived from the intrinsic nature of the viral strain and result from HBsAg reactivities to a standard panel of antisera. Classification is performed according to the amino acid composition of two mutually exclusive epitopes located at positions 126 and 160 of HBsAg. Serotyping has been mainly used for epidemiological purposes (such as outbreak investigation). To date, there is no evidence of the influence of HIV on HBV serotype expression.

Genotypes were until recently divided into eight categories (A to H), which diverge from one to another by at least 8% of amino acid sequences. Two new genotypes, designated I and J, were discovered in 2008 in Laotian and Japanese patients [9,10]. In HBV monoinfection, genotypes seem to be determined mostly by the patient's geographical origin. Genotypes A and D are ubiquitous, whereas B and C are mostly found in Asia, with E predominantly in Africa, and F and H genotypes probably of Pacific and Latin American origin. Until now, the origin of genotype G remains a mystery and has been described only in Europe, USA and Japan. As in HBV monoinfection, the distribution of genotypes among HIV–HBV-coinfected patients is dependent upon the geographical origin of the patient. In three studies of HIV–HBV-coinfected patients from France (n=206) [11], USA and Australia (n=53) [12] and Spain (n=62) [13], genotypes A and D were predominant (76%, 94% and 90%, respectively), and genotypes B and C were not observed. However, 11% of the French study sample was infected with genotype E, reflecting the high proportion of patients from Africa. Similarly, 3% of the study population harboured genotype F, reflecting patients originating from Latin America. Finally, the proportion of genotype-G-infected patients varied, and included 5% from Spain, 6% from USA and Australia and 12.3% from France. In HBV monoinfection, the clinical and therapeutic consequences of genotypes are still doubtful because studies addressing the issue have been conducted in countries with a narrow genotypic range. Moreover, these studies made direct endpoint comparisons between at most two genotypes. In the context of HIV–HBV coinfection, only one study to date has addressed the effect of HBV genotypes on liver disease severity [11]. In this cohort study, a retrospective analysis found a strong association between the degree of liver fibrosis and the presence of genotype G, after adjustment for age, sex, anti-HBV treatment, the level of immunodeficiency and the presence of hepatitis C with or without hepatitis D infection. No association has been established between genotype and response to treatment with nucleoside/nucleotide analogues [14,15].

Phenotypic diversity

Phenotypic mutants can occur under selective pressures, resulting from host immune responses to natural HBV infection, as well as from prophylactic or therapeutic interventions.

From C gene mutations

Precore (preC), core (C) and basal core promoter (BCP) mutants are derived from aberrant coding of the preC/C ORF. They mainly represent attempts to escape from host immune surveillance and emerge at later stages of chronicity, thereby reflecting long-term evolution of HBV disease [16]. PreC and BCP mutations affect HBeAg expression. Specific BCP mutations, such as T1753C, A1762T, G1764A and C1766T, have been associated with a decreased synthesis in messenger RNA, and thus a down regulation of HBeAg expression [17–19]. The consequences of such mutations are a reduction of synthesized HBeAg and an enhanced viral replication, which have been associated with fulminant hepatitis in HBV-monoinfected patients [20,21]. The prevalence of double A1762T/G1764A and triple T1753C/A1762T/G1764A mutations found in sequenced strains present in...
the USA and Australia study of 53 HIV–HBV-coinfected patients was 15% and 6%, respectively [12]; however, its effect on disease severity was not explored because of the cross-sectional nature of the study.

PreC mutations completely abolish HBeAg synthesis by disruption of the preC open reading frame. The most common mutation is a nonsense mutation of codon 28 in the preC region. The expression of preC mutations is strongly linked to HBV genotype and is often associated with BCP mutations. In HIV–HBV coinfection, the prevalence of preC mutations varied between studies: 10% in the USA and Australia study [12], and 25% in the French [11] and Spanish [13] studies. In the French study, the presence of the W28 mutation was associated with advanced liver fibrosis. However, this effect was abrogated by coinfection with genotype G, which exhibits two stop codons in the preC region at positions 2 and 28, consequently preventing translation of the HBeAg precursor and leading to a predominance of preC mutants in HBV subtype G-infected patients [22,23].

From P gene mutations

The spontaneous heterogeneity of the HBV genome generates a complex mixture of pol mutant quasi-species whose composition evolves over time according to selective pressures exerted by nucleoside/nucleotide analogues. When drugs are used with a weak genetic barrier or at incorrect dosing, mutants are progressively selected and a mutation can emerge as predominant, leading to viral breakthrough. Cross-resistance is common with lamivudine, emtricitabine, entecavir and tenofovir. Mutations in the B domain (V173L and L180M) and C domain (M204I/V/S) of the reverse transcriptase region of the P gene emerge in >90% of HIV–HBV-coinfected patients after 4 years of lamivudine exposure [24]. Mutations selected by exposure to entecavir (I169T and T184G in the B domain, S202G/I in the C domain and M250V in the D domain) appear at a higher rate in patients already exposed to lamivudine, as observed in 5% of 68 HIV–HBV-coinfected patients with lamivudine-resistant strains undergoing a clinical trial of entecavir [25]. No data are available on the emergence of resistance in coinfected patients treated with emtricitabine or tenofovir to date, as the former is never prescribed alone for HIV-infected patients and the use of the latter in HIV infection has been constrained because of its possible anti-HIV activity [26], although this is yet to be corroborated by $in vitro$ analysis [27].

With regard to adefovir and tenofovir, data on the acquisition of HBV resistance in the context of HIV–HBV confection are scarce. Although an efficient antiviral activity of adefovir in patients harbouring lamivudine-resistant HBV strains has been previously reported [28], the appearance of an A181T mutation conferring resistance to adefovir has been described in an HIV–HBV-coinfected patient experiencing a second viral breakthrough while on adefovir, after a previous breakthrough associated with takeover by a lamivudine-resistant mutant [29]. Finally, the A194T mutation in the B domain might confer partial resistance to tenofovir, which can lead to an increased viral replication when associated with pre-existing preC and BCP mutations, as seen in HBeAg-seronegative patients [30]. However, these data were obtained $in vitro$ and have not thus far been confirmed $in vivo$. Indeed, this mutation was not found in patients with viral replication after a mean 13 months of tenofovir treatment [31]. Furthermore, an HIV–HBV-coinfected patient from France [32] and several HBV-monoinfected patients from Canada [33] who were already harbouring an A194T strain at tenofovir initiation were still virologically suppressed after 36 and 18 months of follow-up, respectively.

From S gene mutations

PreS S and S mutants stem from aberrant encoding of the preS ORF. Two main preS mutations, preS1 and preS2, have been described, which seem to emerge during chronic infection as a consequence of host immune response evasion [8]. Their transmission potential as well as pathogenicity are unclear. The frequency of preS2 mutations in the USA and Australia study of HIV–HBV-coinfected patients was 16%, and most of these patients experienced lamivudine resistance with high levels of HBV replication [12].

HBsAg synthesis can be significantly altered by S gene mutations. The selection of such mutants is triggered by exposure to hepatitis B immunoglobulin [34] or by pressure on pol that induces mutations on the overlapping portion of the S gene. The former may be referred to as ‘immune-escape’ mutants, and the latter as ‘vaccine-escape’ mutants. The immunodominant ‘a’ determinant of HBsAg is the major target for neutralizing antibodies. An insertion during its encoding can produce a replicative HBV strain whose HBsAg is undetectable by commonly used immunoassays. This phenomenon was observed in 23% of an HIV–HBV-coinfected cohort starting antiretroviral treatment in South Africa [35], and might be associated with profound HIV-related immunosuppression. Most of the S gene mutations are caused by missense mutations. Both P120T/S and G145R/K/A have been reported to decrease the antigenicity and immunogenicity of HBsAg [36,37]. Such mutational patterns were found in 13% of 53 patients with ongoing HBV replication [12]. More alarming patterns of S gene mutations occur in the pol/S gene overlap selected during exposure to nucleoside/nucleotide analogues. In particular, the E164D, W196S, I195M, M198I and E164D/I195M emerge in connection with lamivudine resistance and are responsible for reduced...
binding to antibodies against HBsAg (anti-HBs) [38]. Furthermore, a recent study of vaccinated chimpanzees has shown that the E164D/I195M mutation, associated with the 173/180/204 triple mutations acquired under lamivudine, emtricitabine or tenbivudine therapy, could lead to infection despite the presence of high anti-HBs in their blood [39]. Such mutations have been found in 17% of patients in the USA and Australia study [12].

Implications

The entangling of HIV and HBV epidemics and the scaling up of antiretroviral use at a worldwide level underlie the emergence of new constellations of HBV mutants. Furthermore, the degree of immunosuppression could influence the extent of HBV genetic variability in HIV–HBV-coinfected patients. Recent data presented at the 16th Conference on Retroviruses and Opportunistic Infections, 16–19 February 2009 (Montreal, QC, Canada), showed that HIV-infected patients with mild immunosuppression (defined as a CD4+ T-cell count >600 cells/mm3) are similar to patients without HIV infection regarding the prevalence of plasma-circulating HBV immune-escape mutants, yet have a higher prevalence of such mutants when compared with heavily immunosuppressed HIV–HBV-coinfected patients [40]. The prevalent use of antiretrovirals with a consequent immunorestitution might therefore predispose the emergence of HBV immune-escape mutants in the absence of potent anti-HBV drugs. Lastly, the widespread use of antiretroviral agents with anti-HBV activity that have a low genetic barrier, such as lamivudine, might favour the emergence of vaccine-escape mutants in regions of high HIV–HBV endemicity. In these areas, more potent drugs, such as tenofovir, are not easily accessible. Longitudinal studies are strongly needed to examine the incidence of such mutations and their effect in terms of HBV-related morbidity in the HIV-infected population, as well as their transmission potential.

Disclosure statement

The authors declare no competing interests.

References

33. Fung S, Marzulli T, Sherman M, Popovic V. Tenofovir (TDF) is effective in lamivudine (LAM)-resistant chronic hepatitis B patients who harbour rtA194T as baseline. Annual Meeting for the American Association for the Study of Liver Diseases. 30 October–3 November 2009, Boston, MA, USA. Abstract 399.

