You are here:  > Browse Articles

Original article

Antivirally active ribavirin analogues – 4,5-disubstituted 1,2,3-triazole nucleosides: biological evaluation against certain respiratory viruses and computational modelling

Anna Krajczyk, Katarzyna Kulinska, Tadeusz Kulinski, Brett L Hurst, Craig W Day, Donald F Smee, Tomasz Ostrowski, Piotr Januszczyk, Joanna Zeidler

Corresponding author name: Joanna Zeidler
Corresponding author e-mail:

Citation: Antiviral Chemistry & Chemotherapy 2014; 23:161-171
doi: 10.3851/IMP2564

Date accepted: 12 March 2013
Date published online: 28 March 2013


Background: Ribavirin is a broad-spectrum antiviral agent that derives some of its activity from inhibition of cellular inosine monophosphate dehydrogenase (IMPDH), resulting in lower guanosine triphosphate (GTP) levels. Here we report the biological activities of three ribavirin analogues.

Methods: Antiviral activities of test compounds were performed by in vitro cytopathic effect inhibition assays against influenza A (H1N1, H3N2 and H5N1), influenza B, measles, parainfluenza type 3 (PIV-3) and respiratory syncytial viruses. Compounds were modelled into the ribavirin 5′-monophosphate binding site of the crystallographic structure of the human type II IMPDH (hIMPDH2) ternary complex. Effects of compounds on intracellular GTP levels were performed by strong anion exchange HPLC analysis.

Results: Of the three compounds evaluated, the 5-ethynyl nucleoside (ETCAR) exhibited virus-inhibitory activities (at 1.2–20 μM, depending upon the virus) against most of the viruses, except for weak activity against PIV-3 (62 μM). Antiviral activity of ETCAR was similar to ribavirin; however, cytotoxicity of ETCAR was greater than ribavirin. Replacing the 5-ethynyl group with a 5-propynyl or bromo substituent (BrCAR) considerably reduced antiviral activity. Computational studies of ternary complexes of hIMPDH2 enzyme with 5′-monophosphates of the compounds helped rationalize the observed differences in biological activity. All compounds suppressed GTP levels in cells; additionally, BrCAR suppressed adenosine triphosphate and elevated uridine triphosphate levels.

Conclusions: Three compounds related to ribavirin inhibited IMPDH and had weak to moderate antiviral activity. Cytotoxicity adversely affected the antiviral selectivity of ETCAR. As with ribavirin, reduction in intracellular GTP may play a role in virus inhibition.


Copyright © 2020 Nucleus Holdings Ltd. Part of Nucleus Global.
Design and Technology by Nucleus Global
Company registration No. 321 0712 (England & Wales). Registered Office address: Admiral House 76-78 Old Street, London EC1V 9AZ.